L A B SOFT

LaboTex

Version 3.0

The Texture Analysis Software for Windows

LaboTex: Modelling of ODF, Pole Figures and Inverse Pole Figure

Release 3.

© LaboSoft s.c. Telephone: +48 502311838 Telefax: +48 12 3953891 E-mail: office@labosoft.com.pl LaboSoft 1997-2019

Contents

1. MODELS OF ORIENTATION DISTRIBUTION FUNCTION	
1.1 Opening of dialog window for ODF modelling	
1.2 PROJECT NAME, SAMPLE NAME AND JOB NAME OF MODEL ODF	4
1.3 Crystal Symmetry	4
1.4 Cell parameters	5
1.5 SAMPLE SYMMETRY	6
1.6 Grid cells for output ODF	7
1.7 Texture components	
1.8 MODEL CALCULATIONS	10
2. MODELS OF POLE FIGURES AND INVERSE POLE FIGURES	11
3. ODF TRANSFORMATION	14
3.1. SAMPLE FRAME BOTATIONS	
3.1. SAMPLE FRAME ROTATIONS	
 3.1. SAMPLE FRAME ROTATIONS. 3.2. CRYSTALITES/PLANES ROTATIONS. 4. ODFS LOGICAL OPERATIONS (MODELLING MENU). 	
 3.1. SAMPLE FRAME ROTATIONS. 3.2. CRYSTALITES/PLANES ROTATIONS. 4. ODFS LOGICAL OPERATIONS (MODELLING MENU). 5. ODF MODELLING USING OWN CALCULATION PROCEDURES. 	
 3.1. SAMPLE FRAME ROTATIONS	

1. Models of Orientation Distribution Function

1.1 Opening of dialog window for ODF modelling

User can open dialog for ODF modelling from menu 'Modelling' :

n Analysis Modelling	Help
0 X B 😅 👔	::::::::::::::::::::::::::::::::::::::

or he can use icon which is marked on the image below:

1	Analysis	Modelling	Help	ょ
00	ХB	8	III IS (A	

Dialog window for ODF modelling ('Model ODF') contains many options:

Model (Model ODF														
	Crystal Symmetry Crystal Symmetry Cubic) Crystal Symmetry Crystal Symmetry Crystal Symmetry Crystal Symmetry						Grid Cells for Output ODF				Step Diagram Range -	0.50 +/- 45.0			
100.0%	*		Centre of	f Orientation	1	10)0.0%		Centre	of Orientati	on	100.0%		Centre of Orientati	on T P
No	0.5	50 <mark>F¥</mark> Tavh	HM 194 =	= 10.0	4	-5.0 Πn	U.: Distribu	oU tion		Р = 10.0	45	i.0 (Volume	0.50	FWHM Y2 = 10.	0 45.0
	{ 1	101			-		Gauss		10.0	10.0	10.0	Fraction	%	Sample Name	
2	{ (0.01}	1 0 0;	> cube			Gauss		10.0	10.0	10.0	10 🗧	%	2·S37_110	▼
3	, 	1 0 0 > f	fiber		-		Gauss		fiber	10.0	10.0	10 🗄	8	Project Name	
4	< -	1 5 4 > f	fiber		~		Gauss		fiber	10.0	10.0	10 🚊	%	aaaa	-
5	< -	1 6 1 > 1	fiber		~		Gauss		fiber	10.0	10.0	10 🚊	%	,	
6	< 5	5 7 1 > f	fiber		-		Gauss	-	fiber	10.0	10.0	10 🚊	8	- Cell Parameters (Rela	itive)
7	{ fit	ber , 15.0	00, 40.00	0}	~		Gauss	T	fiber	10.0	10.0	10 🚔	%	a 1.0 b	1.0 c 1.0
8	{ fit	ber , 15.3	79, 45.00	0}	_		Gauss	_	fiber	10.0	10.0	10 🚔	%		
9	< .	1 1 5 > f	riber		T		Gauss	_	fiber	10.0	10.0	10 🚔	%	α 90. β	90. y 90.
10	< -	1 5 1 > 1	riber		~		Gauss	7	fiber	10.0	10.0	10 👙	8		
I Ine	Image: Max. Background 80 %														
	Creation of Model ODF Exit														

1.2 Project name, sample name and job name of model ODF

In first step user should choose project name from the 'Project Name' combo box and sample name from the 'Sample Name' combo box.

Sample Name	
2-\$37_110	•
Project Name	
aaaa	•

When LaboTex creates model ODF it place new ODF in the next free job for sample. For example if user had 6 jobs (for J1 to J6) then LaboTex creates new - job number 7 (J7) and in this job is placed new ODF.

L	aboTe	:x - SM	1ITH Use	r							
File	Edit	View	Calculatio	on Ana	alysis	Modelling	Help	D			
	·ŀ	0 🖬	ا 👤 ا	300 X	Ēð	8			•	1	
CPF	NPF RF	F APF	INV ODF	J1 J2	2 J3.	J4 J5 J6	J7	P ₁	P 2	Φ	

User can also defines new project name and new sample name by change of name in combo box. In this case model ODF will be placed in first job of new sample.

1.3 Crystal Symmetry

The crystal symmetry of model ODF is current LaboTex crystal symmetry.

Model ODF	
Crystal Symmetry	ę
O (Cubic)	
Centre of Orienteti	io

User can change current LaboTex crystal symmetry in menu file (item 'Crystal Symmetry ...') or by click on the crystal symmetry icon :

Next user can choose crystal symmetry for your model ODF from the list:

1.4 Cell parameters

LaboTex use relative cell parameters for ODF creations. All parameters are given by LaboTex in case of cubic system (all fields are grayed):

In case of crystal symmetry lower than cubic user has to complete appropriates cell parameters. For example, in case of orthorhombic crystal symmetry user has to complete two parameters: b and c:

Notice: For details about convention for cell parameters which is used in LaboTex see to report: 'Pole figures: registration and plot conventions'

LaboTex completes 'free' cell parameters by 0.0 value. If user doesn't change these values on the proper one then LaboTex will give a message of the form:

1.5 Sample symmetry

Choice of sample symmetry is very easy. User choose suitable sample symmetry from options:

- Triclinic
- Monoclinic
- Orthorhombic
- Axial

Sample Symmetry	7
Triclinic 🗨	

The figures below show examples of ODF for different sample symmetry (cubic c.s., ϕ_1 =const. projection):

Triclinic sample symmetry

Orthorhombic sample symmetry

Monclinic sample symmetry

Axial sample symmetry

Examples of ODF for different sample symmetry (cubic crystal symmetry, projections : φ_1 =const.)

1.6 Grid cells for output ODF

The LaboTex allows on the creation of ODF in many different grids:

- 1.0° x 1.0°
- 1.2° x 1.2°
- 1.25° x 1.25°
- 1.5° x 1.5°
- 1.8° x 1.8°
- 2.0° x 2.0°
- 2.25° x 2.25°
- 2.5° x 2.5°
- 3.0° x 3.0°
- 3.6° x 3.6°
- 3.75° x 3.75°
- 4.5° x 4.5°
- 5.0° x 5.0°
- $6.0^{\circ} \ge 6.0^{\circ}$
- 7.5° x 7.5°
- 10.0° x 10.0°

User select suitable grid from combo box :

- Grid Cells for Outp	ut ODF —	
	5.0×5.0	•

The pictures below shows examples of ODF created for different grids: $10.0^{\circ} \times 10.0^{\circ}$ and $1.0^{\circ} \times 1.0^{\circ}$ (cubic crystal symmetry, orthorhombic sample symmetry).

Notice: Work with high resolution ODF ($<2.5^{\circ}$) needs high speed graphic card and PC. You should test and find maximal resolution for comfortable work with LaboTex on the your computer (for example: file with ODF for triclinic sample symmetry and triclinic crystal symmetry for grid 1.0° x 1.0° contains about 23millions data when file for the same ODF for grid 5.0° x 5.0° contains about 180 000 data).

1.7 Texture components

Model ODF can contains up to 10 components. User can add new component click on the appropriate check box. In example on the picture below user has chosen 'goss' and 'cube' components. Components 3 to 10 are non-active in model ODF calculations.

No	Texture Component	On
1	{110}<001>goss 💌	
2	{001}<100>cube	
3	< 1 0 0 > fiber 🔽	
4	< 1 5 4 > fiber 💌	
5	< 1 6 1 > fiber 💌	
6	< 5 7 1 > fiber 💌	
7	{ fiber , 15.00, 40.00}	
8	{ fiber , 15.79, 45.00}	
9	< 1 1 5> fiber 🗾 💌	
10	< 1 5 1 > fiber 💌	

User can change component in suitable combo box for texture component. Combo box contains all components from orientation data base for given crystal symmetry. If you would like to create model with new component then you have to introduce first new component to database. You can to make it in dialog 'Database'. It is available from menu 'Analysis'.

For each component you can choose :

- Type of distribution function;
- FWHM for φ_{1} ;
- FWHM for Φ ;
- FWHM for φ_{2} ;
- Volume fraction.

Distribution	ENHM 🖗	г₩нмФ	FWHM 🖗	Volun Fracti	ne ion	
Gauss 💌	24.50	25.00	25.00	25	÷	%
Gauss 💌	25.00	25.00	25.00	25	÷	%
Gauss 💌	fiber	10.0	10.0	10	A. 7	%
Gauss 💌	fiber	10.0	10.0	10	- A-	%
Gauss 💌	fiber	10.0	10.0	10	- A-	%
Gauss 💌	fiber	10.0	10.0	10	A.	%
Gauss 💌	fiber	10.0	10.0	10	A. 7	%
Gauss 💌	fiber	10.0	10.0	10	- A-	%
Gauss 💌	fiber	10.0	10.0	10	- A-	%
Gauss 💌	fiber	10.0	10.0	10	- A-	%
		Ba	ackground	50		%

You can choose Gauss or Lorentz distribution function using combo box for given component's. FWHM for each Euler angle you can set using sliders:

LaboTex displays graph with distribution for component which 'No' button is pressed:

No	Texture Component	On
\mathbf{H}	{110}<001>goss 💌	
2	001)×100>cube 💌	
3	< 1 0 0 > fiber 💌] 🗆
4	< 1 5 4 > fiber 💌] 🗆
5	< 1 6 1 > fiber 💌] 🗆
6	< 5 7 1 > fiber 💌] 🗆
7	{ fiber , 15.00, 40.00}] 🗆
8	{ fiber , 15.79, 45.00}] 🗆
9	< 1 1 5 > fiber 💌	🗆
10	< 1 5 1 > fiber] 🗆

Similarly, FWHM settings are doing for component which '**No**' button is pressed. User should also set volume fraction of texture component in percents. It can be done for each component using vertical scroll bar:

Volur Fract	ne ion	
25	÷	%
25	÷	%
10	- A-	%

LaboTex calculates automatic volume fraction of background V_B (random orientation component) on the base of volume fraction of all *n* components :

$$V_B = 100 \frac{o}{o} - \sum_{i=1}^{n} V_i$$

and it write V_B value in 'Background' field in column of 'Volume Fraction'':

No	Texture Component		On	Distribution		FYHM 🖗	г₩НМФ	FVHM 🖗	Volun Fracti	ne ion	
1	{110}<001>goss	•	☑	Gauss	•	24.50	25.00	25.00	25	÷	%
2	{001}<100>cube	•	☑	Gauss	•	25.00	25.00	25.00	25	÷	%
3	< 1 0 0 > fiber	7		Gauss	-	fiber	10.0	10.0	10	14 17	%
4	< 1 5 4 > fiber	7		Gauss	$\overline{\mathbf{v}}$	fiber	10.0	10.0	10	14 17	%
5	< 1 6 1 > fiber	-		Gauss	-	fiber	10.0	10.0	10	4 7	%
6	< 5 7 1 > fiber	-		Gauss	-	fiber	10.0	10.0	10	A. 7	%
7	{ fiber , 15.00, 40.00}	7		Gauss	$\overline{\mathbf{v}}$	fiber	10.0	10.0	10	- A-	%
8	{ fiber , 15.79, 45.00}	7		Gauss	-	fiber	10.0	10.0	10	- 	%
9	< 1 1 5> fiber	7		Gauss	-	fiber	10.0	10.0	10	A. 7	%
10	< 1 5 1 > fiber	7		Gauss	-	fiber	10.0	10.0	10	÷	Ŷ
	Max.						Ba	ackground	50		2
Line	arity							· · · ·		-	

1.8 Model calculations

LaboTex in model calculations assumes isotropy of Euler space for Gauss or Lorentz distribution. Exceptions are orientations lying on the Φ =0 plane. These orientations are not 'points' but are 'lines' for $\varphi_1+\varphi_2$ =const. in Euler space. In case of cubic crystal symmetry LaboTex shows basic region of ODF which one consists with 3 'true' (fundamental) basic regions ('true basic' regions have non-linear boundary hence they are not used for ODF visualization - for details see for example to: J.W.Flowers, "Volume Fractions of Texture Components of Cubic Materials", Textures and Microstructures, 1983, Vol.5, pp. 205-218), hence each component has at least 3 symmetrically equivalent orientations. If option 'Max. Linearity" is checked then LaboTex build model in 'true' basic region is build on the base of model from first region.

To start model calculation user should press button 'Creation of Model ODF' :

Creation of Model ODF

Next LaboTex calculates model ODF. User should choose kind of ODF projection for visualization of calculated ODF:

<i>Ф</i> 1	P2	Φ
------------	----	---

Next user can display ODF in 3D view.

Note: If you would like to compare created model of ODF with other ODF use 'Compare Mode'. If you want to fit model of ODF to your experimental ODF use option in menu 'Analysis', item 'Quantitative Analysis - Model Functions Methods ...".

2. Models of Pole Figures and Inverse Pole Figures

When you have done model ODF then you can make calculations of models pole figures analogically as for ODF calculated from experimental pole figures or as for ODF calculated from single orientations data. In menu 'Calculation' are menu items : 'ODF to APF' and 'ODF to INV'. You can also click directly on the icon to start dialog window for calculation of pole figures:

In 'ODF to APF' dialog window you can make calculation of normal pole figures. You only have to choose miller indices h, k, l of pole figure which you want create and next click on the button 'START APF CALCULATION'.

Miller indices of calculated pole figures are displayed on the list as marked below.

Additional Pole	Figures (APF) for Calculation • + 1 • - 2 3 4 5 6 7 8 9		0 1 2 3 4 5 6 7 8 9	Calculated APF hkl 111 100 211
A	PF hkl : 21	1		
Calcul	ation Progress (100.0 %)		
STAF	RT APF CALCUL	ATION		END

When you finish calculation of pole figures then click 'END' button. All your pole figures are always available when you choose APF (Additional Pole Figures) icon on the toolbar. When you click on the '111', '100', '211' icon then LaboTex displays one or more pole figures. If you would like to display pole figures from job number 2 you have to click first on button 'J2' and next you should choose 'APF' icon and finally you should click on the pole figures icons.

Note: Pole figures for each job are calculated on the base of ODF from this job.

Analogically you can create models of inverse pole figures (menu item : 'ODF to INV'). In this case you have to choose the vector components: X, Y, Z for which LaboTex calculates orientation distribution on the stereogram. The most popular are directions of axis: 001 (ND direction), 010 (TD direction) and 100 (RD/LD direction). Details you can find in Report :"The Nomenclature of Inverse Pole Figures Use in LaboTex" (see: http://labotex.com).

Inverse Pole Figures (INV) Calculation	x
Choose Inverse PF Vector for Calculation X Y 1 2 2 3 4 5 5 6 6 7 7 7 8 9 9 9 XYZ: 111 Calculation Progress (0.0%)	
START INV CALCULATION	END

All your inverse pole figures are always available when you choose INV (INVerse pole figures) icon on the toolbar:

When you click on the '001', '100', '010' icon then LaboTex displays one or more complete inverse pole figures:

If you would like display partial inverse pole figure (orientations distribution of a sample axis on a standard stereographic triangle) you should click on the icon with triangle or you should choose item 'Basic Region' in menu 'View'.

When this icon is pressed LaboTex displays partial inverse pole figures in place of complete inverse pole figures:

Note: If icon for basic region is pressed then analysis icons are grayed.

3. ODF Transformation

LaboTex calculates new ODF which is result transformation of initial ODF. New ODF is created in new job for sample of initial ODF. There are two kinds of transformations:

- Sample Frame Rotation;
- Crystallites/Planes Rotations.

ODF Transformation (Rotation)	X
Project Demo	Sample 250-bernd
Crystal Symmetry O (Cubic)	Sample Symmetry Orthorhombic
Sample Frame Rotation	C Crystallites/Planes Rotations Build Rotations Model
Euler Angles P1	Choose Rotation Model
O Draft	Quality C High Quality s.s. (Output ODF)
Transformation Progress	Cancel 0.00 %

3.1. Sample Frame Rotations

Using dialog: "Sample Frame Rotations" user can rotate the sample frame. This option is very important if user would like to see ODF for other (different) sample position User can change sample symmetry for transformed ODF.

Example 1:

You want see ODF for the perpendicular surface with relation to surface which was measured:

ODF for initial axis definition. Sample: Ferrite – triclinic sample symmetry.

ODF after frame rotation : (0,90,0). Sample Ferrite – triclinic sample symmetry.

Pole figures:

first row: pole figures for sample Ferrite (triclinic sample symmetry), **second row** : pole figures calculated from ODF after frame rotation: (0,90,0) for sample Ferrite (triclinic sample symmetry) **third row**: pole figures for <111>fiber model

fourth row: pole figures calculated from model ODF after frame rotation: (0.90.0)

Initial ODF (3D Image) – (Cubic component).

Initial ODF (ODF with Cubic component) after transformation of frame (45 degrees, Phi axis) gives ODF with Goss Orientation.

3.2. Crystalites/Planes rotations.

If you would like to make rotation some crystallites in sample and observe change of ODF then you should make this transformation in two steps:

- 1) Preparation and creations of model of crystallites rotations.
- 2) Transformation of current ODF using model of crystallites rotations.

For preparation of model of crystallites rotations you should:

- click on the menu item "**ODF Transformation**" in menu "**Modellin**g" and next
- choose radio button "Crystallites/Planes Rotations" and finally
- click on the button 'Build Rotations Model":

ODF Transformation (Rotation)	×
Projectamodel2	Sample FERRITE-t-1
Crystal Symmetry <mark>O</mark> (Cubic)	Sample Symmetry
C Sample Frame Rotation	Crystallites/Planes Rotations Build Rotations Model
Euler Angles P1	Choose Rotation Model
Options O Draft O Medium Reversed Spin I Triclinic :	Quality O High Quality s.s. (Output ODF)
Transformation Progress	Cancel 0.00 %

In rotation model you can choose up to 10 texture components for which you set:

- ranges of Euler angle around center of orientation only crystallites which orientation lies inside marked area of Euler space will be rotated. LaboTex will be automatic to make calculations for all symmetrically equivalent positions of orientation.
- vector "hkl" crystallites will be rotated around this vector;
- rotation angle angle about which crystallites will be rotated around 'hkl' vektor.,
- percent of rotated crystallites (from 0 to 100%).

Rotation Model - Project: Demo Sa	mple:250-bernd Job:	:1		×
Builded Models Models			Step 0.50 Diagram Rang	je +/- 45.0 CP
ODF(max) 100.0%	0DF(max) 100.0%	Static	ODF(max) 100.0%	Static
0.50 △P1 = 10.0 Rotations Parameters No Texture Component	45.0 0.3 	BU <u>A</u> P = 23,00 Range of Euler Angles <u>A</u> P <u>A</u> P2	45.0 0.50 2 Rotation Vector h k I	192 = 22.50 45.0 Rotation % of Upturned Angle Planes
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	▼ ▼ 10.0 ▼ ▼ 10.0 ▼ ▼ 10.0 ▼ ▼ 10.0 ▼ ▼ 10.0	23.00 22.50 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1 • 1 • 1 • 1 • 1 • 0 • 0 • 2 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 •	30 ▼ 50 * % 45 ▼ 10 * % 30 ▼ 10 * % 30 ▼ 10 * % 30 ▼ 10 * % 30 ▼ 10 * %
6 {-1 -1 1}<-1 3 2> 7 < 1 1 1> fiber 8 {-1 -1 1}<-1 0-1> 9 {1 1 1}<0 -1 1> 10 {1 2 1}<-10 7-4>	Y 10.0 Y 10.0 Y 10.0 Y 10.0 Y 10.0 Y 10.0 Y 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 Y 100 X 30 Y 100 X
Warning: Only Crystallites/Planes Insic	de Region Around Choser	n Texture Component and its Sy Save Transformation Model	mmetrical Equivalent Positions a	re Rotated.

When you choose all parameters of your rotation models then click on the button **"Save Transformation Model".** You can defined any name for your model.

In the second step you should choose rotation model from "Choose Rotation Model" combo box.

Next you can choose quality of calculated ODF:

- draft (poor quality ODF high speed of calculation)
- medium quality (medium quality ODF and medium speed of calculation)
- high quality (high quality ODF and low speed calculation).

You can also change spin of rotations.

ODF Transformation (Rotation)	×
Project amodel2 Crystal Symmetry O (Cubic)	Sample FERRITE-t-I Sample Symmetry Triclinic
C Sample Frame Rotation Euler Angles P1	Crystallites/Planes Rotations Build Rotations Model Choose Rotation Model R0T1
Options O Draft Medium Reversed Spin Triclinic : START	Quality C High Quality s.s. (Output ODF)
Transformation Progress	0.00 %

In the last step you start transformation calculation click on the "START" button.

ODF Transformation (Rotation)	<u>×</u>
Project amodel2	Sample FERRITE-t-1
Crystal Symmetry O (Cubic)	Sample Symmetry Triclinic
C Sample Frame Rotation	Crystallites/Planes Rotations Build Rotations Model
Euler Angles P1 P2 (-360 - 360) (-180 - 180) (-360 - 360)	Choose Rotation Model
O Draft O Medium Reversed Spin ✓ Triclinic	Quality C High Quality s.s. (Output ODF)
Transformation Progress	Cancel 0.00 %

Example:

Build of model ODF using model ODF dialog (Menu "Modelling", item "ODF Model") with $\{001\} < 100>$ as main component.

We can show some crystallite with orientation $\{001\} < 100$ for this model sample :

 $\{001\}$ – plane perpendicular to ND , <100> direction parallel to RD/LD

Next we want rotate all crystallites lying near {001}<100> orientation about 45 degrees around vector <001> (<hkl>):

- first we choose {001}<100> from '**Texture Component**' combo box as the No. 1 (No.1 texture component should be '**On**').
- because we want rotate only crystallites lying near {001}<100> component hence we can turn off rest of texture components (No. 2 to No. 10 should be '**Off**'')
- choose Euler angles ranges: 25 degrees
- vector <hkl> around all crystallites belong to chosen area of Euler space should be rotate: <001>
- rotate angle = 45 degrees
- percent of crystallites(planes)= 100% (all crystallites in range +/-25degrees for {001}<100> orientation and for all symmetrically points)

So we can show the same crystallite after model rotation <001>45°:

where $\{001\}$ – plane is perpendicular to ND and <110> direction is parallel to RD/LD

 $ODF after model transformation: <\!001\!\!>\!\!45^o$ The main component in transformed ODF is $\{001\}\!<\!\!110\!\!>\!\!.$

4. ODFs logical operations (Modelling menu)

ODFs - logical operations. For activate this option user should switch LaboTex to 'Compare Mode' and next choose two ODFs for comparison: one in left window and second in right window (LaboTex Compare Mode). On the base these two ODFs (A - from left window and B from right window) LaboTex creates new ODF which is:

- intersection of ODF A and ODF B,
- **diference** of ODF A and ODF B (or B-A),
- **union** of ODF A and ODF B,
- **sum** of ODF A and ODF B,
- **ODF difference** : A or B intersection A and B,
- **inverted ODF** (only for A).

New ODF is created in new Job for sample of ODF A. You can copy and paste these diagrams to other applications or you can made images in 'BMP' ot 'TIF' format (menu 'Edit').

ODFs - Logical Operations	X
ODFA (ODF from Left Window)	ODF B (ODF from Right Window)
Project	Project
Demo	Demo
Sample	Sample
250-bernd	250i-bis
Crystal Symmetry	Crystal Symmetry
O. (Cubic)	O (Cubic)
Sample Symmetry	Sample Symmetry
Orthorhombic	Orthorhombic
Make New ODF C on Base of ODFs A and/or	B
ODFs Intersection (A and B)	
O ODFs Difference (A-B)	
C ODFs Difference (B · A)	
C ODFs Union (A or B)	
O DDFs Sum (A+B)	
C ODFs Difference (A or B - (A and B))	
C Inverted ODF A	A → C
🔲 High Quality	
Start	Cancel
Calculation	n Progress
	94.00 %

5. ODF modelling using own calculation procedures

User can use ODF created by LaboTex to own modelling in following ways:

- 1) exports of ODF data in ASCII format;
- 2) creates of file with set of single orientation generated on the base of current ODF.

5.1. ODF Export

The option lets on the saving ODF data to the ASC file (option available from menu "**File**"). The user can choose one from among three data formats:

a) ϕ_1 section - "ODF Export (Phi 1 Section)...":

print to file ϕ_1 section of ODF. First value in first line is a ϕ_1 value. Next data in first line are values of ϕ_2 angle while first column contains values of Φ angle:

```
ODF projection PHI1
PHI1 PHI2 --->
PHI
| ODF values
|
V
```

For example (ODF section for $\phi_1=0$):

	ο.	0 5.	0 10.	0 15.	0 20.	0 25.	0 30.	0	60.0	65.0	70.0	75.0	80.0	85.0	90.0
.0	.90	1.02	1.31	1.72	2.08	2.17	2.08		2.05	2.10	1.98	1.61	1.23	.96	.86
5.0	1.80	1.68	1.81	2.30	2.53	2.40	2.01		1.97	2.35	2.43	2.06	1.58	.97	.65
10.0	2.17	2.03	2.24	2.73	2.61	2.03	1.40		1.20	1.32	1.33	1.14	.93	.65	.48
15.0	2.34	2.19	2.38	2.74	2.26	1.43	.81		.49	.48	.41	.32	.27	.20	.16
20.0	2.56	2.32	2.27	2.18	1.48	.81	.42		.18	.21	.22	.22	.21	.16	.12
70.0	2.24	2.24	2.36	2.15	1.47	.81	.42		.19	.22	.23	.23	.21	.17	.14
75.0	1.95	2.06	2.50	2.64	2.09	1.32	.75		.47	.47	.41	.31	.24	.20	.18
80.0	1.67	1.81	2.34	2.74	2.55	1.98	1.36		1.20	1.37	1.41	1.15	.86	.69	.61
85.0	1.25	1.37	1.84	2.43	2.70	2.51	2.06		1.97	2.38	2.42	1.97	1.48	1.07	.86
90.0	.88	.99	1.27	1.66	2.03	2.13	2.07		2.07	2.13	2.03	1.66	1.27	.99	.88

b) ϕ_2 section - "ODF Export (Phi 2 Section)...":

Print to file ϕ_2 section of ODF. First value in first line is a ϕ_2 value. Next data in first line are values of ϕ_1 angle while first column contains values of Φ angle:

```
ODF projection PHI2
PHI2 PHI1 --->
PHI
| ODF values
|
V
```

Example is analogically as for ϕ_1 section.

c) φ ₁ , φ ₂ , Φ, ODF value - "ODF Export (Phi 1 ,Phi 2, Phi, Odf)":
Print to file ODF in format: ϕ_1 , ϕ_2 , Φ , ODF (four values in each line).

For example:	:		
PHI1	PHI2	PHI	ODF
0.00	0.00	0.00	0.592089E+00
5.00	0.00	0.00	0.637786E+00
10.00	0.00	0.00	0.909632E+00
15.00	0.00	0.00	0.553926E+00
20.00	0.00	0.00	0.414515E+00
25.00	0.00	0.00	0.451965E+00

5.2 Set of single orientation on the base of current ODF

LaboTex can create set of single orientations on the base of current ODF. User can use this set in own modelling procedure and return "SOR" file after modelling. In this manner user receive new ODF after own calculation. On the base of this ODF user can make texture analysis, pole figure calculation volume fraction calculations etc. This option is important for user which modelling deformation (VCS users). User can choose number of single orientations from 10000 to 9999999.

DDF to File with Single Orientations (SOR)				
Filename	a2.SOR		Chan	ge
Path	G:\w3000\USER\SMITH.LAB\WORK			
Crystal Symmetry Sample Symmetry				
O (C	iubic)	Triclinic		
Number of Single Orientations to Generate 500 📩 x 1000				
Random Orientations				
	Start	Cance	!	
		No of sin	gle orien.	251000

User can also generate random set of single orientation using this option. SOR file creates by LaboTex user can input as a new sample and he can make ODF calculation.

Examples:

ODF creates on the base set of 500,000 single orientations generates with 'Random' option:

Section of pole figure {111} calculated on the base above 'Random' ODF:

Comparison pole figure for real texure free (random) sample (red) with pole figure generates from 'random' ODF creates on the base set of 500,000 single orientations (blue):

Format of file with single orientations data is very simple:

filename.SOR – Single ORientation File i.e. experimental, single orientation set in LaboTex format

Line	No of data	Description	Туре
	in line		
1 - 2		Arbitrary title	Character
3		Remarks for data in line 4	
4	1	Structure Code (symmetries after Schoenflies): 1 - C_1 (triclinic) 2 - C_2 (monoclinic) 3 - D_2 (orthorhombic) 4 - C_4 (tetragonal) 5 - D_4 (tetragonal) 6 - T (cubic) 7 - O (cubic) 8 - C_3 (trigonal) 9 - D_3 (trigonal) 10 - C_6 (hexagonal) 11 - D_6 (hexagonal)	Integer
4	2	Lattice constant, a (absolute or relative)	Real
4	3	Lattice constant, b (absolute or relative)	Real
4	4	Lattice constant, c (absolute or relative)	Real
4	5	Lattice angle, α in degrees	Real
4	6	Lattice angle, β in degrees	Real
4	7	Lattice angle, γ in degrees	Real
4	8	Step for output ODF (grid cells). Permissible values (deg): 1.0, 1.2, 1.25, 1.5, 2.0, 2.5, 3.0, 3.75, 5.0, 6.0, 7.5, 10.0*	Real
4	9	Weight for data (1 – present, 0 – absent)	Integer
4	10	Angle Unit: 0 – deg, 1 – rad	Integer

Description of *filename*.SOR data format:

4	11	Angle Convention: 0 – Bunge 1 – Roe	Integer
5 to the end	1	φ ₁	Real
5 to the end	2	Φ	Real
5 to the end	3	\$ ₂	Real
5 to the end	[4]	Weight (optionally) (if parameter weight in line 4 is 1)	Real

Note: Real and integer input data must be separated in line by one or more spaces.